
How Languages Work In MOZ

Robin Lee Powell

This manual is for MOZ (MOO in Oz) version 1.0.
Copyright c© 2002 Robin Lee Powell

Permission is granted to distribute and modify as long as credit is given. See
the file license.txt in the main MOZ distribution for full copyright information.

i

Table of Contents

. 1

1 Localization . 2

2 A Note On Character Sets 3

3 Conceptual Overview . 4

4 Parsing . 5

5 Output . 6
5.1 Localized String Contents . 6
5.2 Special Strings . 6

1

Languages (as in the language used to input commands and read descriptions in the MOZ,
not programming languages) are handled very differently in MOZ than in any other MUD
I’m aware of (not that I’ve looked very hard). This document describes the differences.

Chapter 1: Localization 2

1 Localization

This was taken from the Design doc, and needs editing and stuff.
Localization is the proccess of converting a particular program to work with a given

language. Localization is rather important to the MOZ project as it was originally
concieved as a way for me to write a mud that responded to commands in lojban (see
http://www.lojban.org/), but I don’t want to leave out the ability for MOZ to work in
English or any other language.

Note that all localizations in MOZ use standard 2 letter codes where available, and
made-up 2 letter codes where not.

The way that localization is normally handled, as far as I’m aware, is to have a big
file somewhere that contains the text of all the messages that the program ever outputs
to users. This is very impratical in something that grows with user programming the way
MOZ does. Instead, the way I have decided to handle it is to have all the information for
all supported languages stored on every object.

There are basically three issues that need to be dealt with for localization: parsing,
verbs, and output strings.

Parsing is, unavoidably, going to be different across different languages. The way that
this gets handled is to have different parser classes for each language, and to have the
command line argument that sets the language have the effect of telling the Server which
of those classes to use for the Parser object it associates with each player connection.

Verbs are the various commands associated with any given object. Essentially, verbs
are a way of translating between what a player types (i.e. "get chair") and an Oz method
(probably, eventually, the ’get’ method on the ’chair’ object). The names of the verbs are
going to be different across different languages (’get’ is ’cpacu’ in lojban) as are the parts of
speech (’chair’ is the ’direct object’ in English, but the ’second sumti’ in lojban). However,
all the different languages’ ways of saying "get chair" are going to map to the same method
on the same object (one hopes). So, each object has seperate lists of verbs for each language,
but those lists should all essentially be doing the same thing.

Sooner or later, strings need to be output to the user. The way localization of arbitrary
strings is handled in MOZ is to have the strings stored as Oz records named string with one
different field for each language (using the two letter codes). Which string out of the list
to pick is handled by a substitution method on the Connection object which also handles
substitution of codes that represent the player’s name and such.

Note that this system allows for different people on the MOZ to be using different
languages to interface to the MOZ.

Also, storing verbs and localized strings as attributes allows the possibility of writing a
piece of code that writes a file with Oz code in it that shows every localized piece of infor-
mation currently in the MOZ. This can then be added to with a new language’s information
and then executed.

http://www.lojban.org/

Chapter 2: A Note On Character Sets 3

2 A Note On Character Sets

The inital release of MOZ is only able to parse ASCII strings. However, there is no limita-
tion, at all, in the program that causes this to be the case; it is merely due to the definitions
of ’letter’ and ’number’ in the ParserMonads class.

The MOZ has been shown to pass UTF-8 untouched when players say something, for
example. I, personally, know nothing about any character sets other than ASCII, which is
why I haven’t changed the parsing. If someone else wants to do localization for a language
that uses a more complicated character set, I would love to see the results, and incorporate
them into the main distribution.

Chapter 3: Conceptual Overview 4

3 Conceptual Overview

First off, I want to be absolutely clear that this document has nothing to do with pro-
gramming languages. It is about how MOZ deals with human languages. This is rather
important because MOZ was originally concieved as a way to make a mud that could be in-
teracted with in lojban (See http://www.lojban.org/). The main MOZ code has English
and lojban modes.

MOZ is unique, as far as I’m aware, in supporting more than one language at once.
Different players can see things in their own language, and their actions (although not their
words) will be seen by each player in their own language. So, if a player named ’Foo’ opens
a door, an English speaking player might see

Foo opens the door.

whereas a lojban speaking player might see
la fus. kargau le vorme

in response to the same action.
Note that the player can have different names in each language (Foo is not proper lojban).
The command one types to open the door will also be different depending on one’s

language:
open door

versus
se kalri le vorme

Each player can set their preferred language on the fly.

http://www.lojban.org/

Chapter 4: Parsing 5

4 Parsing

Obviously, this sort of functionality is a little tricky to achieve, so here’s how we do it.
When a player enters a command, it is parsed by a parser appropriate to their language.

The command is parsed into a command word(s) and numbered arguments. Other grammar
words are thrown away. The parser then asks around for an object willing to proccess the
command given. On each object, the verb records are then used to map the command
word(s) to a method on the object and to map the numbered arguments to arguments to
the method.

The method is then called with these arguments, and an argument specifying the lan-
guage the request came in. Normally, the language argument should only be used to pass on
to other methods. In particular, for example, the word for ’door’ is very different in lojban,
so the method for the ’open’ command (which will be the same method for both languages,
as the same functional thing is being done) will need to pass the ’door’ or ’vorme’ argument
on to a method that looks for an object of that name; that method will need to know what
language it should be using to do name comparison.

If the method is happy with the arguments (i.e. the open command on a door will accept
the example given, but the open command on a jar will not), it returns an indication of
same and the parser stops proccessing. Otherwise, the parser moves on to the next object.

All strings in the MOZ should use the string record format that allows for multilin-
gualism, which is another use for passing language information to methods: they can then
output strings in the appropriate language.

In case of failing to find language information, the MOZ will fall back to a default which
can be set by a wizard, and which starts at English. If the default can’t be found, the first
language for which the appropriate information can be found is used. If that fails, an error
results.

Chapter 5: Output 6

5 Output

Each verb should have localized strings which are used to output results in whatever lan-
guages it accepts input in. In some languages, the strings will be blank (because they
represent things not necessary in than language in that case). For example, open might
output:

PRE˙VERB + VERB + POST˙VERB + ARG1 + POST˙ARG1
In both english and lojban, the PRE˙VERB will be the user’s (localized) name. VERB

will be the localized verb name. However, for both of them, POST˙VERB will be empty.
The localized strings are stored by keys (which are Oz atoms) in the LanguageStrings

object. Each database has only one such object. It is of the LanguageStrings class. Strings
are stored using the setLanguageString method; see the Programmer’s Guide for more
details.

5.1 Localized String Contents

Each localized string key looks up a record. The record contains a language code label
for each known language. The label points to the appropriate content in that language.
Example:

string(
en: "[unknown; timeout occured]"
jbo: "to na djuno ni’i le nu dukse le ni denpa toi"

)

The only special case is that some languages do unusual things when a word is the first
word in a sentence. These sentence-initial productions are handled by appending "SI" after
the language tag:

key: indefiniteVowelArticle string: string(
en: "an "
enSI: "An "
lb: "le "

)

5.2 Special Strings

Certain strings are rather more important than others, because they have low-level func-
tions, such as handling article issues and capitalization.

There needs to be a string named <language>Name for each known language, with the
full name for that language in all known languages as the values.

The key listSeperator1 stores the equivalent of the English comma, for lists of things.
The key newlineString stores the localized newline character.

The following are used for articles:
• properNameArticle
• properNameVowelArticle
• indefiniteArticle
• indefiniteVowelArticle

	
	Localization
	A Note On Character Sets
	Conceptual Overview
	Parsing
	Output
	Localized String Contents
	Special Strings

